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Abstract
The creation of protein libraries by random mutagenesis and cassette mutagenesis has proven to be a successful method of protein

engineering. Appropriate statistical analysis is important for the proper construction of these libraries and even more important for the

interpretation of data from these libraries. We present simple mathematical expressions useful in the creation and evaluation of such libraries.

These equations are useful in estimating the distribution of mutations, the degeneracy of the library and the frequency of a particular clone in

the library. In addition, general equations addressing the probability that a particular clone is in a library, the probability that a library is

complete, and as the consequences of retransformation of the library on these probabilities are presented.
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1. Introduction

Fundamental to all methods of directed evolution is the

generation of diversity. Two of the simplest and most

commonly used methods are random mutagenesis and

cassette mutagenesis. The ability to predict parameters such

as the frequency of individual clones Fi and the degeneracy D

of the library of these methods of library creation is extremely

useful. For example, if screening of a library results in no

variant with the desired properties, these equations can be

used to determine if a sufficient number of library members

were screen to have a high probability that all library members

were encountered. Also, these equations can give an estimate

as to the number of transformants necessary to have a high

probability of creating a complete library.

Here we have compiled and developed equations using

simple statistics that will be useful in that regard. Our

treatment is similar to that of Patrick et al. [1]; however, we

focus on equations for determining the degeneracy of the

library, the probability of individual clones in individual
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libraries and the development of general equations for

addressing the probability that a clone is present in a library

(or in a sampling of a library), the probability that a library is

complete and the consequences of propagating a library by

retransformation.
2. Results and discussion

2.1. Library size, diversity and degeneracy

2.1.1. Library size

Library size is an often used but ill-defined term. In

general, the term is used in a way that is synonymous with

the number of transformants, unless the number of

transformants greatly exceeds the maximum degeneracy

of the library, in which case the library size is equal to this

degeneracy. Further complicating the matter is the fact that,

for most libraries not all transformants are ‘meaningful’

library members. For example, consider a cassette mutagen-

esis library constructed by PCR in which four codons were

randomized using NNN. The possible degeneracy on the

DNA level is 1.78 � 107. On the protein level, the possible
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D degeneracy of a library (number of distinct

sequences)

Dmax maximum degeneracy of a library (assuming

an infinite number of transformants

Dmax;km
maximum number degeneracy of protein

sequences with km mutations in a library

Fi frequency that a particular sequence i is pre-

sent in a library

H Hamming distance

k number of base mutations in a DNA sequence

km number of amino acid mutations in a protein

sequence (or number of non-synonymous

mutations in a DNA sequence)

L number of amino acids in a protein sequence

M number of residues randomized in a random

cassette mutagenesis library

n number of bases in a DNA sequence

Pc probability that a library is complete

Pi probability that a particular sequence i is in the

library

Pi, S probability that a particular sequence i is

encountered in a library sample S times

Pk probability of having k base mutations in a

nucleotide sequence

Pkm
probability of having km amino acid mutations

in a protein sequence

Pstop probability that an internal stop codon is pre-

sent in a library member

S number of times a library is sampled

T number of transformants

Tkm number of library members that contain km

mutations

VH number of possible variants that are a Ham-

ming distance of H away from the original

protein

Greek symbols

e error rate (frequency at which a bases is

mutated)

em non-synonymous error rate (frequency at

which an amino acid is mutated)
degeneracy is 1.94 � 105. Suppose a library of 4 � 105

transformants is created in which 90% of the transformants

include a plasmid that receive the insert with the randomized

DNA. What is the ‘library size?’ Rather than giving a library

size, it is much more informative to describe the library in

terms of number of transformants, the fraction of the

transformants that are ‘meaningful’ library members (as

opposed to those members which, for example, did not

receive the insert DNA) and the degeneracy of the library.
2.1.2. Library degeneracy and diversity

The degeneracy D of a library is the number of different

members among the transformants (i.e. the number of

independent clones). The degeneracy of a library depends

on the number of transformants T, the probability of

occurrence of each specific sequence in the library and the

maximum degeneracy Dmax that could possibly be

generated given the method used to create the library

(i.e. the number of different members in a library of an

infinite number of transformants). In the case where all

variants are equally probable, the actual number of

occurrences of any variant can be represented by a Poisson

distribution and the degeneracy of the library is calculated

as follows [1]:

D ¼ Dmaxð1 � e�T=DmaxÞ (1)

A distinction must be made between degeneracy and diver-
sity. Degeneracy describes the number of variants in a

library, whereas diversity is a qualitative description of

how much, on average, two randomly selected library

members will differ. This point is emphasized by noting

that two libraries can both have 1 million variants, and

therefore the same degeneracy, but in one library the average

difference between two randomly picked members may be

three amino acids, whereas in the other library the average

distance between two randomly picked members may be 10

amino acids [2]. Both libraries are equally degenerate but the

latter is more diverse.

2.1.3. Number of possible variants of a protein

A fundamental step of directed evolution is the creation

of a library of variants of a starting protein(s). An obvious

question that arises is how many variants are there of a

particular protein. The Hamming distance H is the number

of mutational steps it takes to get from one sequence to

another. In other words, it is the number of positions

that are different between two proteins. As one increases

the number of mutations in a protein, the number of

possible variants increases exponentially. The number of

variants VH of a protein of amino acid length L that differ

by a Hamming distance of H is given by Eq. (2) as

follows:

VH ¼ 19H L!

ðL � HÞ!H!

� �
(2)

Even for a rather small protein of L = 150, the number of
7
variants with a Hamming distance of two is 1.6 � 10 and

the number of variants with a Hamming distance of three is

1.3 � 1011. Thus, given the limitations of the number of

transformants on library size, for most proteins libraries the

construction of a complete library of all variants with H = 3

is not feasible. We can see how quickly the potential library

size grows and how the likelihood that a complete library

can be created diminishes.
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Table 2

Distribution of mutations in a hypothetical random mutagenesis library of

107 transformants constructed from a protein 300 amino acids long using an

error rate of e = 0.003

k or km Pk Pkm
Tkm

Dmax;km
Fi

0 0.067 0.150 1.501 � 106 1 0.15

1 0.181 0.286 2.856 � 106 1.89 � 103 1.51 � 10�4

2 0.245 0.271 2.707 � 106 1.78 � 106 1.52 � 10�7

3 0.221 0.170 1.704 � 106 1.11 � 109 1.53 � 10�10

4 0.149 0.080 0.802 � 106 5.20 � 1011 1.54 � 10�13

5 0.080 0.030 0.301 � 106 1.94 � 1014 1.55 � 10�16

6 0.036 0.009 0.093 � 106 6.00 � 1016 1.56 � 10�19

7 0.014 0.003 0.025 � 106 1.59 � 1019 1.57 � 10�22
2.2. Library generation

2.2.1. Random mutagenesis

While it is generally not feasible to make a complete

library of all variants with H = 3, 4, etc. random mutagenesis

allows for the sampling of this sequence space by

introducing random point mutations throughout the entire

protein. There are many methods for creating such libraries,

the most common being error-prone PCR [3]. Regardless of

the method, the rate at which these errors are introduced will

dictate the distribution of mutations throughout the library.

Eq. (3) [3] gives the probability Pk of having k mutations in a

sequence length of n bases, where e is the error rate per

position.

Pk ¼ n!

ðn � kÞ!k!

� �
ekð1 � eÞn�k (3)

In the interest of a general treatment that will allow research-
ers to make useful approximations, the simplification made

here is that all mutations on the nucleotide level occur with

equal frequency and that all bases occur with equal fre-

quency in a DNA sequence being considered. In truth, this is

method specific. Treatments of this subject without these

approximations are much more complex [4] and require

knowledge of the specific sequence to be mutated and the

method of mutation.

In practice, what is most relevant (for protein libraries) is

an estimation of the probability of having a non-synonymous

mutation Pkm
as follows:

Pkm
¼ L!

ðL � kmÞ!km!

� �
ðemÞkmð1 � emÞL�km (4)

The variable km is the number of non-synonymous mutations

and em the non-synonymous error rate. This non-synon-

ymous error rate is defined on the amino acid level. Thus,

the non-synonymous error rate is found by multiply the error

rate at the nucleotide level by three (since em is defined per

codon and e is defined per nucleotide) and also multiplying

by the frequency at which a mutation in a codon results in a

non-synonymous mutation (Table 1). Thus, em = 2.10e.
Eq. (4) ignores the possibility of two mutations occurring

in the same codon. This is a very rare event under typical

error rates and thus does not appreciably affect the results.

Eq. (4) can be used to construct a table detailing the

distribution of mutations throughout the library. For exam-

ple, if average size protein of 300 amino acids (n = 900) is

subjected to error-prone PCR with a DNA polymerase
Table 1

Frequency of mutation types as a function of location within a codon

Mutation type Base position within codon Overall

1st 2nd 3rd

Synonymous 0.068 0.021 0.812 0.300

Non-synonymous 0.932 0.979 0.188 0.700

Missense 0.886 0.958 0.162 0.663

Nonsense 0.046 0.021 0.026 0.036
having error rate of e = 0.003 per nucleotide the resulting

distribution of mutations is shown in Table 2. This table can

be used to, along with the number of transformants T, to

determine the number of transformants Tkm
that contain km

non-synonymous mutations.

Tkm
¼ Pkm

T (5)

This can then be compared to the maximum degeneracy
Dmax; km
of variants containing km mutations accessible

using random mutagenesis.

Dmax; km
¼ L!

ðL � kmÞ!km!

� �
6:3km (6)

The number 6.3 appears in Eq. (6) because it is the average
number of non-synonymous or nonsense mutations that can

be made with one nucleotide mutation in a codon. We

calculated this value by examining all 27 one-base mutations

for each codon (except for nonsense codons) and noting

whether a non-synonymous, nonsense or synonymous muta-

tion occurs. The value 6.3 is the sum of all non-synonymous

and nonsense mutations divided by the number of codons

examined (61).

The degeneracy D of the entire library is found summing

the degeneracies of each sub-library (calculated using

Eq. (1)) as follows:

D ¼
X1
km¼0

Dkm
¼

X1
km¼0

Dmax; km
ð1 � e�Tkm=Dmax; km Þ (7)

The degeneracy of the hypothetical library of Table 2 is
6
about 4.3 � 10 , or 43% of the number of transformants.

The degeneracy in this library is lower than the number of

transformants because 15% of the library has no synon-

ymous mutation and members with 1 or 2 non-synonymous

mutations appear multiple times among the transformants.

One can also calculate the expected average frequency Fi of

a particular sequence i with km mutations as follows:

Fi ¼
Tkm

=Dmax; km

T
(8)

When performing error-prone PCR, factors that can alter
the error-rate include the relative amounts of dNTP’s and the

concentration of the template DNA. However, most

commonly the error rate is controlled by the MnCl2
concentration. The error rate can be determined by extensive



A.D. Bosley, M. Ostermeier / Biomolecular Engineering 22 (2005) 57–6160
sequencing of the library or by existing data on the literature

on the relationship between PCR conditions and error rate

(e.g. Shafikhani et al [5]). In addition, the mutation rate

during PCR has been estimated by computational methods

[6].

2.2.2. Cassette mutagenesis

Cassette mutagenesis is a method of library creation in

which a particular region or regions is targeted for

mutagenesis. Generally, the library is created through the

use of degenerate oligonucleotides aimed at introducing a

predetermined degeneracy into the protein at particular

regions. Obviously, one can make libraries in which the

diversity at each position varies in any number of different

ways. What is covered here is libraries in which the positions

are completely, or almost-completely randomized. The

simplest approach is to create a library from oligonucleo-

tides in which an equimolar mixture of the four nucleotides

is used at each position (NNN libraries). However, using this

method there is the possibility of encoding a stop codon

within the target sequence. In a library in which M residues

are randomized using NNN nucleotides, the probability of a

stop codon being present in a sequence is given by Eq. (9) as

follows [7]:

Pstop ¼ 1 � 1 � 3

64

� �M

(9)

To minimize the likelihood of stop codons within the library,
a nucleotide mixture of NNB (where B = not A (C or G or

T)) can be used. This allows only one possible stop codon of

the 48 possible codons while still allowing all possible

amino acids to be coded. The probability of a stop codon

appearing is reduced to that given by Eq. (10) as follows:

Pstop ¼ 1 � 1 � 1

48

� �M

(10)

At the DNA level, the maximum degeneracy for an NNN
n 2n/3 n/3
library is Dmax = 4 and for a NNB library is Dmax = 4 3 .

The degeneracy of the library can be found using Eq. (1),

since all DNA sequences can be assumed to be equally

probable. On the protein level, the maximum degeneracy of

any random cassette mutagenesis library is Dmax = 21M.

However, not all sequences are equally prevalent due to

the different number of codons that code for each amino acid

and thus Eq. (1) cannot be used to determine the degeneracy

of the library. The difference between the most common

library member (e.g. variable positions are all arginine,

serine or leucine) to the least common member (e.g. a

library member in which all variable positions are trypto-

phan) can be enormous. The difference in frequency

increases exponentially with the number of positions varied

(6M for NNN libraries and 5M for NNB libraries). This bias

may actually be viewed as an advantage since nature has

found this distribution of codons to be advantageous for

creating proteins.
2.3. Library completeness

2.3.1. What is the probability that a particular sequence

is in the library?

The probability Pi of a particular sequence i being in a

library is given by Eq. (11) and depends on the number of

transformants T and the frequency Fi at which that library

member is expected to be present in the library [8].

Pi ¼ 1 � ð1 � FiÞT (11)

Fi is the product of the frequency that i is expected to be
present considering the method used to create the library and

the frequency of ‘meaningful’ library members (as opposed

to, for example, those not receive the insert).

At the outset of creating a library it is useful to determine

the size of library to have in order to have a probability Pi of

having a particular sequence i in the library. This can be

approximated by Eq. (12) when (1�Fi) is close to one.

T ¼ � lnð1 � PiÞ
Fi

(12)

From this equation one can show that in order to have a 99%
probability of having a particular member in the library, the

product of T and Fi must be �4.6. For a library in which all

members are equally frequent, this means that the number of

transformants must exceed the maximum degeneracy by a

factor of 4.6 in order to have a �99% probability that a

particular member is present in the library.

2.3.2. What is the probability that a particular sequence

was encountered in a sampling of a library?

The probability Pi, S that a particular sequence i was

encountered in a sampling of the library depends on the

probability that the library contained the sequence to begin

with (Pi) and the probability that it will be encountered in

sampling the library S times as given by Eq. (13) as follows:

Pi;S ¼ Pið1 � ð1 � FiÞSÞ (13)
2.3.3. What is the probability that a library is complete?

It is never correct to state that a library is complete,

rather the probability that a library is complete should be

stated. This is found by taking the product of the pro-

babilities that each particular library member is present in

the library.

Pc ¼
YD

i¼1

Pi (14)

where Pi is evaluated for each member of the library by
Eq. (11). If the probability of occurrence of each member of

the library is equal, then Eq. (14) reduces to Eq. (15) [9].

Pc ¼ ½1 � ð1 � FÞT 	Dmax
(15)

For such a library, it is useful to rearrange and simplify
Eq. (15), as shown in Eq. (16), in order to calculate the

number of transformants needed in order to have a certain

probability that the library is complete.
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T ¼ lnð1 � Pc
1=DÞ

lnð1 � FÞ 
 lnð1 � Pc
1=DÞ

�F
(16)

For typical degeneracies (103 to 107), the number of trans-
formants must exceed the degeneracy by a factor on the

order of 10–25 in order to have a �99% probability of

having a complete library. However, it should be noted that

rarely is the frequency of each member of the library the

same and, thus, the simplification of Eqs. (14)–(16) can

rarely be made. Even in the case where the Eq. (16) is not

mathematically justified, it is still a useful, quick lower

estimate of the number of transformants needed to have a

certain probability of a complete library. If some library

members are more rare than the frequency used to calculate

T in Eq. (16), then the T calculated will be underestimated.

For libraries created through random mutagenesis, it is

easiest to view the resulting library as several sub-libraries

differentiated by the number of mutations and use the above

equations to determine the probability of completion of each

sub-library.

2.3.4. Propagation of a Library

If a library present on a plasmid is to be retransformed

into a new host or sub-cloned into a new vector, this must be

taken into account when considering the probabilities

described above. Basically, the probability must be the

product of the probability in the original library and the

probability associated with creation of the sub-cloned or

retransformed library. The calculation of this product is

analogous to the probability associated with sampling a

library (Eq. (13)) as the second set of transformants can be

viewed as a sampling of the first library.

For example, consider a library of 106 transformants in

which the maximum degeneracy is 8 � 105. If we make the

simplification that all transformants are ‘meaningful’ library

members and that each library member of the degeneracy

has an equal probability of occurrence, the probability that a

particular sequence is present is 0.714 (from Eq. (11)). If this

library were then sub-cloned into a new plasmid resulting

in 2 � 106 transformants, the probability that a particular
sequence is present would decrease (to 0.714 � 0.917 =

0.655) even though the number of transformants in the sub-

cloned library was two-fold higher than the original library.

It follows also that this sub-cloned library is less diverse than

the original library. This emphasizes the point that in order to

maintain the number of unique members of the original

library upon sub-cloning or retransformation can require a

number of transformants that greatly exceeds the number of

transformants in the original library.

2.4. Other sources and online programs

Patrick et al. [1] have developed similar mathematical

expressions on some of the topics presented here and, in

addition, they offer a treatment of libraries created by in vitro

recombination. These equations are the basis of computer

programs available online at http://www.bio.cam.ac.uk/

�blackburn/stats.html.
Acknowledgement

This work was supported by a grant from the National

Science Foundation (#BES-0239088).
References

[1] Patrick WM, Firth AE, Blackburn JM. Protein Eng 2003;16:451–7.

[2] Sun F. J Comput Biol 1995;2:63–86.

[3] Caldwell RC, Joyce GF. Mutageneic PCR. In: Dieffenbach C, editor.

PCR Primer: A Laboratory Manual. Plainview, NY: Cold Spring Harbor

Laboratory Press, 1995.

[4] Moore GL, Maranas CD. J Theor Biol 2000;205:483–503.

[5] Shafikhani S, Siegel RA, Ferrari E, Schellenberger V. Biotechniques

1997;23:304–10.

[6] Wang D, Zhao C, Cheng R, Sun F. J Comput Biol 2000;7:143–58.

[7] Steipe B. Curr Top Microbiol Immunol 1999;243:55–86.

[8] Clarke L. Carbon J Method Enzymol 1979;68:396–408.

[9] Zilsel J, Ma PH, Beatty JT. Gene 1992;120:89–92.

http://www.bio.cam.ac.uk/~blackburn/stats.html
http://www.bio.cam.ac.uk/~blackburn/stats.html

	Mathematical expressions useful in the construction, �description and evaluation of protein libraries
	Introduction
	Results and discussion
	Library size, diversity and degeneracy
	Library size
	Library degeneracy and diversity
	Number of possible variants of a protein

	Library generation
	Random mutagenesis
	Cassette mutagenesis

	Library completeness
	What is the probability that a particular sequence �is in the library?
	What is the probability that a particular sequence was encountered in a sampling of a library?
	What is the probability that a library is complete?
	Propagation of a Library

	Other sources and online programs

	Acknowledgement
	References


